Client-Side IPv6 Measurement at Scale

G coff Huston APNIC Labs How to measure millions of end devices for their IPv6 capability?

How to measure millions of end devices for their IPv6 capability?

Be

How to measure millions of end devices for their IPv6 capability?

OR

Have your measurement code run on millions of end devices

APNIC's Approach

- we wanted to measure IPv6 deployment as seen by end users
- We wanted to say something about ALL users
- So we were looking at a way to sample end users in a random but statistically significant fashion
- We stumbled across the advertising networks...

APNIC^{Thank} you for helping us measure the Internet.

APNIC^{Thank} you for helping us measure the Internet.

<!DOCTYPE html>

```
<html><head data-gwd-animation-mode="quickMode"><meta name="GCD"
content="YTk30DQ3ZWZhN2I4NzZmMzBkNTEwYjJl657daa7a9fa4c339ce298ace1f626e3e"/>
```

```
<meta name="generator" content="Google Web Designer 1.2.1.0121">
<meta http-equiv="Content-Type" content="text/html;/charset=utf-8">
<meta name="viewport" content="width=device-width,/initial-scale=1.0">
```

<script type="text/javascript" src="https://s0.2m/dn.net/ads/studio/Enabler.js"></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script

</script>

```
<script type="text/javascript" src="<u>html5ad.js</u>"
```

</script> <bodv>

```
sing src="apnic-logo.png" style="float:left"/>
Thank you for helping us measure the Internet.
```

```
<script type="text/javascript">
runLabsTests();
```

</script>

```
<!-- This section contains metadata about the ad. Most importantly, the ad size. -->
```

```
<script type="text/gwd-admetadata">
```

```
{"version":1,"type":"DoubleClick","format":"","template":"","politeload":true,"counters":[],"timers":[],"exits":
[],"creativeProperties":{"minWidth":468,"minHeight":60,"maxWidth":468,"maxHeight":60},"components":[]}</script>
</body></html>
```


Ad Server

End user

Authoritative Name Server

Web Server

Web Server

Authoritative Name Server

What can be scripted

- Not much:
 - http.FetchImg()

i.e. attempt to retrieve a URL

- But that's enough!
 - It's EXACTLY what users do!
 - A URL consists of a DNS question and an HTML question
 - What if we point both the DNS and the HTML to servers we run?
 - As long as each Ad execution uses unique names we can push the user query back to our servers

Tests

Think of a URL name as a microcoded instruction set directed to programmable DNS and HTTP servers ...

http://06s-u69c5b052-c13-a0461-s1579128735-icb0a3c4c-0.ap.dotnxdomain.net/v61x1.png

Valid DNS

IPv6 access only

Valid DNSSEC signature available

User is located in Country 13 (Australia) User is in AS1221 (Telstra)

Time is 16 January 2020 9:52am

User's IPv4 address is 203.10.60.76

Tests

- We listen on /64s so we can use nonce IPv6 addresses
- Currently we are looking at encoding IPv4 and time in the IIF to detect replay activities

Ad Placement

At low CPM, the advertising network needs to present unique, new eyeballs to harvest impressions and take your money.

 Therefore, a 'good' advertising network provides fresh crop of unique clients per day

Unique IPS?

- Collect list of unique IP addresses seen
 - Per day
 - Since inception
- Plot to see behaviours of system
 - Do we see 'same eyeballs' all the time?

Lots of Unique IP'S

google uniques/day 🕂 🛛 google cumulative uniques 🛪 🦳 javascript uniques/day 🗮 javascript cumulative unique 🖶

Ad Presentation Volumes

Daily Total Ad Impressions for Google Campaign Group - Month: 09-May to 13-Jun

Ad Presentations: Countries

Ad Impressions by Country (Top 20) by day

Bias Compensation

- The ad presentation is NOT uniform across the Internet's user population
 - The ad machinery 'over-presents' in some countries:

Bias Compensation

- The ad presentation is NOT uniform across the Internet's user population
 - The ad machinery 'under-presents' in some countries:

Bias Compensation

 Use ITU data on Internet users per country as the reference set, and weight the ad results to compensate for ad placement bias

	1
-	

сс	Country	IPv6 Capable 🔻	IPv6 Preferred	Samples	Weight	Weighted Samples
IN	India, Southern Asia, Asia	63.64%	62.68%	1,030,515	0.97	1,003,783
BE	Belgium, Western Europe, Europe	58.89%	58.59%	13,139	1.64	21,592
US	United States of America, Northern America, Americas	55.76%	55.06%	782,992	0.78	614,124
MY	Malaysia, South-Eastern Asia, Asia	47.35%	46.80%	55,056	0.85	46,901
DE	Germany, Western Europe, Europe	46.12%	45.43%	78,484	1.95	153,196
GR	Greece, Southern Europe, Europe	45.69%	45.49%	56,917	0.27	15,228
TW	Taiwan, Eastern Asia, Asia	44.58%	43.06%	95,145	0.42	39,994

Dealing with the data

- Unified web logs, dns query logs, packet capture
- Map individual DNS and HTML transactions using a common experiment identifier
- For example:
 - DNSSEC validation implies:
 - DNS queries include EDNS(0) DNSSEC OK flag set
 - See DNS queries for DNSSEC signature records (DNSKEY / DS)
 - User fetches URL corresponding to a validly signed DNS name
 - User does not fetch URL corresponding to a in validly signed DNS name

What are we measuring?

- IPv6 Adoption
- IPv6 Dual Stack Preference
- IPv6 Performance
- IPv6 FragmentationExtension header fragility

What are we seeing?

IPv6 Adoption by Country

IPv6 Adoption and Preference

IPv6 Preference

IPv6 Per-Country Deployment for AS9500: VODAFONE-TRANSIT-AS Vodafone NZ Ltd., New Zealand (NZ)

IPv6 Performance

IPv6 Reliability

But...

It's not a general purpose compute platform, so it can't do many things

- Ping, traceroute, etc
- Send data to any destination
- Pull data from any destination
- Use different protocols

This is a "many-to-one" styled setup where the server instrumentation provides insight on the inferred behaviour of the edges

Measurement Ethics

- There is no user consent
- And cookies (even "don't measurement me!" cookies) are progressively being frowned upon by the ad placement folk

Which means we:

- Don't generate large data volumes
- Don't use 'compromising' URL names
- Don't publish PII
- Don't share any raw data from our DNS and HTTP servers

In Summary...

- Measuring what happens at the user level by measuring some artifact or behaviour in the infrastructure and inferring some form of user behaviour is always going to be a guess of some form
- If you really want to measure user behaviour then its useful to trigger the user to behave in the way you want to study or measure
- The technique of embedding simple test code behind ads is one way of achieving this objective
 - for certain kinds of behaviours relating to the DNS and to URL fetching